コンテンツにスキップ

Configuration

Pydanticの動作は、BaseModel.model_configを介して、またTypeAdapterへの引数として制御できます。

Note

v2.0より前は、Configクラスが使用されていました。これはまだサポートされていますが、非推奨です。

from pydantic import BaseModel, ConfigDict, ValidationError


class Model(BaseModel):
    model_config = ConfigDict(str_max_length=10)

    v: str


try:
    m = Model(v='x' * 20)
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    v
      String should have at most 10 characters [type=string_too_long, input_value='xxxxxxxxxxxxxxxxxxxx', input_type=str]
    """

また、configオプションをモデルクラスkwargsとして指定することもできます。

from pydantic import BaseModel, ValidationError


class Model(BaseModel, extra='forbid'):  # (1)!
    a: str


try:
    Model(a='spam', b='oh no')
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    b
      Extra inputs are not permitted [type=extra_forbidden, input_value='oh no', input_type=str]
    """
  1. 詳細については、Extra Attributesセクションを参照してください。

同様に、Pydanticの@dataclassデコレータを使用する場合:

from datetime import datetime

from pydantic import ConfigDict, ValidationError
from pydantic.dataclasses import dataclass

config = ConfigDict(str_max_length=10, validate_assignment=True)


@dataclass(config=config)
class User:
    id: int
    name: str = 'John Doe'
    signup_ts: datetime = None


user = User(id='42', signup_ts='2032-06-21T12:00')
try:
    user.name = 'x' * 20
except ValidationError as e:
    print(e)
    """
    1 validation error for User
    name
      String should have at most 10 characters [type=string_too_long, input_value='xxxxxxxxxxxxxxxxxxxx', input_type=str]
    """

Configuration with dataclass from the standard library or TypedDict

標準ライブラリのdataclassTypedDictを使用する場合は、代わりに__pydantic_config__を使用してください。

from dataclasses import dataclass
from datetime import datetime

from pydantic import ConfigDict


@dataclass
class User:
    __pydantic_config__ = ConfigDict(strict=True)

    id: int
    name: str = 'John Doe'
    signup_ts: datetime = None

あるいは、with_configデコレータを使用して、型チェッカーに準拠することもできます。

from typing_extensions import TypedDict

from pydantic import ConfigDict, with_config


@with_config(ConfigDict(str_to_lower=True))
class Model(TypedDict):
    x: str

Change behaviour globally

Pydanticの動作をグローバルに変更したい場合は、設定が継承されるので、カスタムmodel_configを使用して独自のカスタムBaseModelを作成できます。

from pydantic import BaseModel, ConfigDict


class Parent(BaseModel):
    model_config = ConfigDict(extra='allow')


class Model(Parent):
    x: str


m = Model(x='foo', y='bar')
print(m.model_dump())
#> {'x': 'foo', 'y': 'bar'}

model_configModelクラスに追加すると、Parentmodel_configと_merge_します。

from pydantic import BaseModel, ConfigDict


class Parent(BaseModel):
    model_config = ConfigDict(extra='allow')


class Model(Parent):
    model_config = ConfigDict(str_to_lower=True)  # (1)!

    x: str


m = Model(x='FOO', y='bar')
print(m.model_dump())
#> {'x': 'foo', 'y': 'bar'}
print(m.model_config)
#> {'extra': 'allow', 'str_to_lower': True}